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a b s t r a c t

The objective of this paper is to provide a review of recent finite element formulations for
immersed methods. In these finite element formulations, independent Lagrangian solid
meshes are introduced to move on top of a background Eulerian fluid mesh. This key fea-
ture allows the handling, without excessive fluid mesh adaptation, multiple deformable
solids immersed in viscous fluid. In particular, pros and cons of both explicit and implicit
approaches are illustrated along with subtle differences between incompressible and
slightly compressible models.

Published by Elsevier Inc.
1. Introduction

Numerical investigations of fluid–structure interaction problems require reliable numerical modeling and simulation
tools [19,32]. An efficient and robust modeling technique is essential in the study of complicated physical phenomena, espe-
cially in bioscience and biomedical fields. In the past few decades, numerous research efforts have been directed to method
development for the modeling of fluid–structure interaction systems. Stabilized methods are widely used in the simulation
of fluid–particle and fluid–structure interactions [20]. The arbitrary Lagrangian Eulerian (ALE) formulation is commonly
introduced to accommodate the complicated fluid–structure interfacial motions [12,31,35]. In general mesh updating and
remeshing processes are computationally expensive. Recently, the fictitious domain method and the extended finite element
method have been proposed to study fluid–structure interactions [5,10,11].

The immersed boundary method was originally developed by Peskin for the computation of blood flows interacting with
the heart and heart valves [6]. The mathematical formulation of the IB method employs a mixture of Eulerian and Lagrangian
descriptions for fluid and solid domains. The interaction between fluid and solid domains is accomplished by distributing
nodal forces and interpolating nodal velocities between Eulerian fluid and Lagrangian solid domains. The advantage of
the IB method is that the fluid–structure interface is automatically tracked, which circumvents costly mesh updating algo-
rithms. One major obstacle of the IB method is the assumption of the fiber-like immersed elastic structure. This assumption
restrains realistic modeling of structures that may require complicated constitutive laws and an accurate representation of
the finite volume occupied by immersed solids within the fluid domain. Nevertheless, the concept of the IB method had pro-
found impacts. Since the inception of finite element formulations of immersed methods, a wealth of extensions have been
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introduced to connect the immersed finite element method with molecular dynamics and various multi-scale and multi-
physics models [9,30]. In the initial attempt to employ finite element formulations with immersed methods, so-called ex-
tended immersed boundary method was introduced to represent immerse solids with nonlinear finite element formulations
[27]. In this attempt, the fluid solver remains the same as the immersed boundary method and discretized delta functions are
still based on uniform background fluid grids. In another attempt, so-called immersed finite element method (IFEM) was
developed to represent the background viscous fluid with an unstructured finite element mesh in addition to nonlinear finite
elements for immersed solids [34]. In IFEM, kernels of reproduced kernel particle method (RKPM) are employed for unstruc-
tured background finite element meshes [29]. This meshfree delta function provides not only a higher order smoothness in
coupling fluid and solid domains, but also the ability to handle nonuniform fluid grids, which offers flexibility and robustness
in the numerical scheme. However it has been pointed out and confirmed mathematically that as long as the power input to
the surrounding fluid is preserved, the communication between two domains can be simply accomplished by finite element
interpolation functions within each element [2]. In these earlier finite element based immersed methods, explicit time inte-
gration schemes are used. Moreover, because the surrounding viscous fluid is incompressible, the immersed deformable so-
lid is also kept incompressible. In addition, mixed finite element formulations have been introduced to handle compressible
solid immersed in compressible viscous fluid [23,24]. With the implicit and compressible finite element formulations, it is
anticipated that immersed methods can be directly implemented for various continua immersed in a background contin-
uum. The goal of this paper is to provide a recap of recently activities and to compare explicit with implicit and compressible
with incompressible finite element formulations.

2. Immersed incompressible continuum

Instead of representing the immersed structures/solids with fibers, nonlinear finite element formulations are employed
in recent immersed finite element methods [27,34]. The initial attempt of connecting a traditional linear elastic model
with the immersed boundary method can be traced back to Sulsky and Brackbill [17], in which a stress function is trans-
ferred to the fluid grid. In these new attempts, submerged solids can experience large displacements and deformations. If
the surrounding fluid is viscous and incompressible, the immersed solid must be incompressible in immersed methods.
There are two views of immersed solids. The first one which matches with the original understanding of the immersed
boundary method, namely, the immersed solid is wet and permeated with the same fluid as the surrounding. Therefore,
the elasticity forces will be the additional force due to the solid portion of the immersed solid. This understanding seems
realistic for biological system modeling, since the tissues are mostly fluid–solid systems and the elastic parts are contrib-
uted by elastomer, collagen, or other solid constituents. On the other hand, the second understanding of the immersed
solid is more in tune with the traditional fluid–structure interaction systems in which the immersed solid is dry and
impermeable. If the immersed solids are impermeable, the additional elastic forces are large in comparison with the vis-
cous counterparts calculated with the material properties of the surrounding fluid, both views for immersed solids could
yield the same forces.

In the initial versions of finite element formulations for immersed methods [2,27,34], the immersed solids are assumed to
be incompressible. Detailed convergence studies have also been presented in Ref. [3,4]. Consider a general three-dimensional
incompressible hyperelastic material model with the following Mooney–Rivlin material description
W ¼ C1ðJ1 � 3Þ þ C2ðJ2 � 3Þ; ð2:1Þ
with
J1 ¼ I1; J2 ¼ I2; I1 ¼ Ckk; I2 ¼ ðI2
1 � CijCijÞ=2; ð2:2Þ
where W is the elastic energy potential and C is the Cauchy–Green deformation tensor defined as C ¼ DT D with the solid
deformation gradient Dij ¼ oxs

i ðtÞ=oxs
j ð0Þ.

Note that since the solid displacements are mapped from the background fluid, if the surrounding fluid is incompressible,
the solid must also be incompressible, which corresponds to J3 ¼ I1=2

3 ¼ ðdetðCÞÞ1=2 ¼ 1. However, no additional measures are
taken to enforce such a constraint which might pose a problem for the volume conservation of the immersed solid. For struc-
tures with large displacements and deformations, the second Piola–Kirchhoff stress S and the Green–Lagrangian strain � are
used along with a total Lagrangian formulation. Hence, employing Eq. (2.1), we derive
Skl ¼
oW
o�kl

and �ij ¼
1
2
ðCij � dijÞ: ð2:3Þ
Thus, the equivalent internal force for the material points of the flexible structure can be derived as
Fk ¼
o

oxs
k

Z
XsðtÞ

WdX

 !
¼
Z

Xsð0Þ
Sml

o�ml

oxs
k

dX; ð2:4Þ
where xs
k and Fk stand for the current position vector of the kth submerged node and the corresponding internal nodal force

vector, respectively, and XsðtÞ and Xsð0Þ represent the current and the original volume of the submerged solid.
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Note that if the nonlinear structural material has a density qs different from the fluid density qf , we should also include
the inertial force. Consequently, the resultant node force vector R, a combination of the surrounding fluid force Rf and other
external force Re, can be expressed for each material point:
R ¼ Rf þ Re ¼
F; qs ¼ qf ;

FþM€U; qs–qf ;

(
ð2:5Þ
where U represents the nodal displacement vector and the consistent mass matrix M is defined as
M ¼
Z

Xsð0Þ
ðqs � qf ÞH

T H detðDÞdX; ð2:6Þ
with H as the interpolation matrix.
Based on the concept of immersed methods, it is the force Rf that we must distribute to the surrounding fluid. Finally in

explicit schemes, we have
f ¼ �
Z

XsðtÞ
Rf dðx� xsÞdX; ð2:7Þ

Rf ¼
Z

Xsð0Þ
S

o�

oxs dXþ
Z

Xsð0Þ
ðqs � qf ÞH

T H detðDÞdX€U� Re; ð2:8Þ

vs ¼
Z

X
vdðx� xsÞdX; ð2:9Þ
where Xsð0Þ represents the original solid configuration employed in the total Lagrangian formulation.
Eq. (2.8) is used to derive nodal forces attached to immersed solid material points; Eq. (2.7) is employed to distribute the

nodal forces to the surrounding fluid; and Eq. (2.9) is applied to interpolate the velocity of the solid node based on the veloc-
ities of the surrounding fluid nodes. Notice that Eq. (2.7) is carried out in the current configuration of the submerged solid
and the same kernel is used in Eqs. (2.7) and (2.9).

3. Immersed compressible continuum

In the case of incompressible solid immersed in incompressible fluid, if there is no excessively stiff boundary springs
connecting with tether points and the additional elasticity moduli of the immersed solid are reasonable, the traditional ex-
plicit scheme can be employed [27,34]. In this section, we discuss a general case of compressible solid immersed in com-
pressible fluid. In fact, this general case also covers one seemingly very different scenario, namely, compressible solid
immersed in incompressible fluid. In the immersed continuum method, we use a physical argument such that the bulk
modulus of the solid can be much higher than the bulk modulus of the fluid. With the assumption that the acoustic wave
speed within the fluid is constant, a so-called pseudo compressible fluid model is often used in numerics to mimic incom-
pressible fluid behaviors. However, since this model is the same as isentropic acoustic fluid and fluid–structure interaction
systems [26], with sufficiently small time steps, pressure wave propagation and related scattering and radiation phenom-
ena will be captured. The traditional assumption for acoustic FSI systems is small strain and small displacement, namely,
the FSI interface does not move at all. It seems that immersed methods bear no advantages over traditional mixed finite
element formulations or potential formulations [25]. Why do we have to bother with this type of fluid model coupled with
compressible solid? First of all, there will be cases where pressure waves are strong enough to move the immersed solid.
Secondly, to use the concept of immersed methods, we need to replace the immersed solid with a fluid the same as the
surrounding fluid. If the volume of the immersed solid changes ever so slightly, the volume of the corresponding fluid must
also change, hence, the model of the surrounding fluid must also be slightly compressible. Of course, it is possible that with
sufficiently large time steps in the implicit time integration procedures, the pressure waves due to volumetric changes will
not be captured accurately, however the transient behaviors of fluid–structure interactions due to inertial and viscosity will
be accurately depicted. It is important to point out that here the immersed solid is viewed as impermeable thus such a
volume of fluid does not exist physically. To account for the correct effect of the submerged solid exerting on the surround-
ing fluid, we must subtract the inertial force, the external body force, and the internal stress effects of such an imaginary
fluid volume XsðtÞ. This idea is similar to the fictitious domain method [11,22,33]. The key difference is that the displace-
ment unknowns of the immersed solids are not considered as part of the independent unknowns. If they are listed as inde-
pendent variables along with the corresponding Lagrangian multipliers, the immersed boundary/continuum methods and
the fictitious domain method might share the same inf-sup condition similar to the modeling of almost incompressible
materials [1].

Consider the same domain X, suppose there exists a submerged solid domain Xs enclosed by a sufficiently smooth bound-
ary Cs, the entire domain X is subdivided into two regions, namely, the solid region Xs and the fluid region Xf . Therefore, the
boundaries of the solid and the fluid regions can be simply expressed as oXs ¼ Cs and oXf ¼ Cs [ Cv [ Cf . Denote r as the
stress tensor, v as the velocity vector, we establish the following set of governing equations (strong form):
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qs _vs
i ¼ rs

ij;j þ qsgi; in Xs; ð3:10Þ

qf _v f
i ¼ rf

ij;j þ qf gi; in Xf ; ð3:11Þ
½v i� ¼ 0; on Cs; kinematic matching; ð3:12Þ
½rijnj� ¼ 0; on Cs; dynamic matching; ð3:13Þ
where the surface normal vector n is aligned with that of the solid domain ns and opposite to that of the fluid domain nf .
Define the same Sobolev space ½H1

0;Cv
ðXÞ�d, we express Eqs. (3.10)–(3.13) in the variational form (weak form):

8w 2 ½H1
0;Cv
ðXÞ�d
Z

Xs

wi qsð _v s
i � giÞ � rs

ij;j

h i
dXþ

Z
Xf

wi qf _v f
i � gi

� �
� rf

ij;j

h i
dX ¼ 0: ð3:14Þ
Again, using integration by parts and the divergence theorem, introducing dynamic matching at the interface Cs, and com-
bining the solid and fluid domains with Xs [Xf ¼ X, Eq. (3.14) can be rewritten as: 8w 2 H1

0;Cv
ðXÞ

h id
Z
X
½wiqf ð _v i � giÞ þwi;jrij�dX�

Z
Cf

wif
Cf

i dC�
Z

Xs

ws
i f

s
i dX ¼ 0; ð3:15Þ
with
 Z
Xs

ws
i f

s
i dX ¼ �

Z
Xs

wiðqs � qf Þð _v i � giÞ þwi;j rs
ij � rf

ij

� �h i
dX: ð3:16Þ
In the explicit implementation, we introduce the following two key equations to synchronize the fluid occupying the sub-
merged solid domain Xs with the solid:
f fsi
i ¼

Z
Xs

f s
i dðx� xsÞdX; ð3:17Þ

vs
i ¼

Z
X

v idðx� xsÞdX; ð3:18Þ
where f fsi represents the same equivalent body force as in the immersed boundary method.
It is very important to recognize that fs is the force density within the solid domain Xs; whereas f fsi is the equivalent body

force over the entire domain X. In fact, fs can be viewed as the Lagrangian multiplier for the constraint vf ¼ vs within the
solid domain Xs.

For the fluid domain, we adopt an Eulerian kinematic description and for convenience omit the superscript f , therefore,
the material derivative of the fluid velocity is expressed as
_v i ¼ v i;t þ v jv i;j: ð3:19Þ
For the solid domain, we employ a Lagrangian kinematic description, thus the fluid–solid interface will be tracked automat-
ically by the position of solid particles. Moreover, there is no need for convective terms in the solid domain and the material
derivative is the same as the time derivative. Hence, the solid velocity vector vs and the acceleration vector _vs can be ex-
pressed as
vs ¼ _us and _vs ¼ €us; ð3:20Þ
with the displacement vector usðtÞ ¼ xsðtÞ � xsð0Þ, where xsðtÞ and xsð0Þ stand for the current and the original material point
positions within the solid domain Xs.

In order to deal with the compressible viscous fluid, we subtract the pressure p from the stress components rij and obtain
the deviatoric stress components sij, which is illustrated in a Newtonian fluid model,
rij ¼ �pdij þ sij; ð3:21Þ
with sij ¼ lðv j;i þ v i;jÞ.
Furthermore, to couple with the pressure unknown, the continuity equation of the compressible viscous fluid is expressed

as
v i;i þ
_p
j
¼ 0; ð3:22Þ
where j is the bulk modulus of the fluid and the material derivative _p can be simply expressed as p;t þ v ip;i for the Eulerian
description.

In the analysis of slightly compressible fluids, we assume the compressibility measured by bulk modulus j is constant.
Therefore, we have the following relationship between the density and the pressure of the fluid domain,
dp
dq
¼ c2 ¼ j

q
: ð3:23Þ
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From Eq. (3.23), it is straightforward to derive the following
pðtÞ � pð0Þ ¼ j ln
qðtÞ
qð0Þ : ð3:24Þ
Like the fluid stress tensor, we also decompose the solid stress tensor as a hydrostatic pressure ps, and a deviatoric stress
tensor ss

ij,
rs
ij ¼ �psdij þ ss

ij: ð3:25Þ
In order to extend the incompressible nonlinear solid model to compressible model, as discussed in Ref. [18], we introduce
�W ¼ C1ðJ1 � 3Þ þ C2ðJ2 � 3Þ þ jsðJ3 � 1Þ2=2; ð3:26Þ
along with an additional elastic energy term �½ps þ jsðJ3 � 1Þ�2=2js to W .
Therefore, the continuity equation becomes a constraint for the solid unknown pressure ps
J3 � 1þ ps

js
¼ 0; ð3:27Þ
where js is the solid bulk modulus and J3 stands for the determinant of the deformation gradient D.
Of course, the solid Cauchy stress can be converted from the second Piola–Kirchhoff stress,
rs
ij ¼

1
J3

DimSmnDjn: ð3:28Þ
Finally, since the solid displacement is dependent on the fluid velocity, the primary unknowns for the coupled fluid–solid
system are the fluid velocity v, the fluid pressure p, and the solid pressure ps. Define the Sobolev spaces, so the weak form
of governing equations can be modified as: 8q 2 L2ðXÞ, qs 2 L2ðXsÞ, w 2 ½H1

0;Cv
ðXÞ�d, which includes 8ws 2 ½H1ðXsÞ�d, and find v

and p in X, ps in Xs, such that
Z
X

wiqð _v i � giÞdXþ
Z

X
ðwi;jsij � pwi;iÞdX�

Z
Cf

wif
Cf

i dCþ
Z

Xs

ws
i ðqs � qÞð _v i � giÞ þws

i;j ss
ij � sf

ij

� �
� ðps � pÞws

i;i

h i
dX

þ
Z

X
q v j;j þ

p;t
j

� �
dXþ

Z
Xs

qs J3 � 1þ ps

js

� �
dX ¼ 0: ð3:29Þ
We recognize that there are two sets of discretizations, namely, one for the Lagrangian solid mesh and the other one for the
Eulerian fluid mesh. Note that the convective terms are hidden in _vh

i and the detailed expressions of other stabilized Galerkin
formulation for the Navier–Stokes equations can also be found in Refs. [20,21]. In general the interpolation functions for the
velocity vector and the unknown pressures are different. Therefore, we retain the superscripts v and p to denote such dif-
ferences. For the fluid domain X, the following interpolations are used:
vh ¼ hv
I vI; wh ¼ hv

I wI; ph ¼ hp
I pI; qh ¼ hp

I qI; ð3:30Þ
where hv
I and hp

I stand for the interpolation functions at node I for the velocity vector and the pressure; and vI , wI , pI , and qI

are the nodal values of the discretized velocity vector, admissible velocity variation, pressure, and pressure variation,
respectively.

For the solid domain Xs, the discretization is based on the following:
us;h ¼ hu
J us

J ; ws;h ¼ hu
J ws

J ; ps;h ¼ hps

J ps
J ; qs;h ¼ hps

J qs
J ; ð3:31Þ
where hu
J and hps

J stand for the interpolation functions at node J for the displacement vector and the unknown pressures; and
us;h

J , ws;h
J , ps;h

J , and qs;h
J are the nodal values of the discretized displacement vector, admissible velocity variation, pressure, and

pressure variation, respectively.
Substituting both discretizations (3.30) and (3.31) into Eq. (3.29), we obtain the following discretization of the weak form:

8qh 2 L2ðXhÞ, qs;h 2 L2ðXh
s Þ, wh 2 H1;h

0;Ch
v
ðXhÞ

h id
, which includes 8ws;h 2 H1;hðXh

s Þ
h id

,
Z
Xh

wiIh
v
I q _vh

i dX�
Z

Ch
f

wiIh
v
I f

Ch
f

i dCþ
Z

Xh
ðwiIh

v
I;jsij � phwiIh

v
I;iÞdXþ

Z
Xh

s

½ws
iJh

u
J ðqs � qÞð _vh

i � giÞ þws
iJh

u
J;jðrs

ij � rf
ijÞ�dX

�
Z

Xh
wiIh

v
I qgidXþ

Z
Xh

qIh
p
I vh

j;j þ
ph
;t

j

 !
dXþ

Z
Xh

s

qs
J h

ps

J J3 � 1þ ps;h

js

� �
dX ¼ 0: ð3:32Þ
For clarity, we introduce a displacement nodal unknown vector U, although it is only evaluated in the solid domain Xs in
which a Lagrangian description is prescribed. In fact, within the solid domain, U is denoted as Us and evolves according
to _Us and €Us which are mapped from the velocity nodal unknown vector V and acceleration nodal unknown vectors _V for
the fluid domain. Mathematically, we could say that vs is v directly evaluated at the material point xs. Likewise, the pressure
nodal unknown vectors P and Ps are introduced for fluid and solid domains, respectively. In this paper, for simplicity, we
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employ the Newton–Raphson iteration, and apply the Newmark time integration scheme. For a typical state variable a, in the
incremental analysis, we have
aðt þ DtÞ ¼ aðtÞ þ _aðtÞDt þ ½ð0:5� aÞ€aðtÞ þ a€aðt þ DtÞ�Dt2;

_aðt þ DtÞ ¼ _aðtÞ þ ½ð1� bÞ€aðtÞ þ b€aðt þ DtÞ�Dt;
ð3:33Þ
where the unknown a stands for the scalar components of the nodal or discretized variables for V, P, and Ps, and a and b are
selected integration constants.

At a typical solid node J, with a finite support domain XJ , the discretized form of the constraint of the velocities of the
immersed solid and the corresponding fluid occupying the same solid domain can be expressed as
vs
J ¼

X
I

vI/IðxI � xs
J Þ; 8xI 2 XJ; ð3:34Þ
where /IðxI � xJÞ is the kernel function centered at the solid node J, represented with xs
J .

Note that in general within the solid domain, we have the stress difference rs
ij � rf

ij or�ðps � pf Þdij þ ss
ij � sf

ij

� �
, in addition

to the mapping of the velocity vector in Eq. (3.34). In order to use the definition of rf
ij, we must also map the unknown pres-

sure from the fluid mesh denoted with node I to the solid mesh denoted with node J. In this case, it is beneficial to use the
continuous pressure mixed finite element formulation for both fluid and solid domains [1]. Consequently, like Eq. (3.34), we
have
pf
J ¼

X
I

pI/IðxI � xs
J Þ; 8xI 2 XJ: ð3:35Þ
Finally, for the entire domain X, due to the arbitrariness of the variations wiI , qI , and qs
J , we have four equations at each fluid

node I and one equation at each solid node J,
rv
iI ¼ 0; rp

I ¼ 0; rps

J ¼ 0; ð3:36Þ
where the residuals are defined as
rv
iI ¼

Z
Xh

hv
I q _vh

i dXþ
Z

Xh
hv

I;jsij � phhv
I;i

h i
dX�

Z
Ch

f

h
v;Ch

f
I f

Ch
f

i dC

þ
Z

Xh
s

M hu
J ðqs � qÞ _vh

i � gi

� �
þ hu

J;j rs
ij � rf

ij

� �h i
dX�

Z
Xh

hv
I qgidX;

rp
I ¼

Z
Xh

hp
I vh

j;j þ
ph
;t

j

 !
dX; rps

J ¼
Z

Xh
s

hps

J J3 � 1þ ps;h

js

� �
dX: ð3:37Þ
At every time step, the nonlinear residual equations in Eq. (3.36) can also be written as follows
rðV;P;PsÞ ¼ 0: ð3:38Þ
Fig. 1. A driven cavity FSI model with an immersed solid fixed in the center of the cavity.



Fig. 2. An illustration of displacement/pressure mixed finite element for solid. The velocity/pressure mixed finite element for fluid has the same
arrangement.
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4. Matrix-free Newton–Krylov

Recently implicit immersed boundary methods have been studied by Newren et al. [8] in the context of finite difference
methods. In this paper, we employ a matrix-free Newton–Krylov iterative procedure for nonlinear sets of Eq. (3.38). In the
kth Newton–Raphson iteration at time step mþ 1 of the nonlinear residual Eq. (3.38), from RN to RN , with N as the number of
the total unknowns, we start with a first guess of the incremental unknowns DHk;0, namely, DV0, DP0, and DPs;0, which often
are zero vectors. Then the residual of the linearized systems of equations at the kth Newton–Raphson iteration is evaluated
as
p ¼ �rmþ1;k�1 � rmþ1;k�1
;v DV0 � rmþ1;k�1

;p DP0 � rmþ1;k�1
;ps DPs;0: ð4:39Þ
This error vector is used to construct the n-dimensional Krylov subspace Kn where J is the N � N Jacobian matrix evaluated at
time step mþ 1 and the kth Newton–Raphson iteration of the nonlinear residual Eq. (3.38) and can be rewritten as
J ¼ rmþ1;k�1
;v ; rmþ1;k�1

;p ; rmþ1;k�1
;ps

� �
: ð4:40Þ
The approximate solution DH is written as the combination of the initial guess DHk;0 and zn, with zn 2 Kn. Note that the
dimension of the subspace Kn is n which is much smaller than the dimension N of the unknown vector DH. The N-dimen-
sional unknown vector DH or rather zn is represented with Vny, where y is a much smaller n-dimensional unknown vector. In
the generalized minimum residual (GMRES) method, the modified Gram-Schmidt orthogonalization procedures are used to
derive a set of orthonormal vectors v i, with 1 � i � n in the Krylov subspace Kn and an ðnþ 1Þ � n upper Hessenberg matrix
�Hn. Define Vn ¼ ðv1v2 . . . vnÞ and Vnþ1 ¼ ðv1v2 . . . vnþ1Þ, we have the following
JVn ¼ Vnþ1
�Hn: ð4:41Þ
The remaining process in the GMRES method is to solve the least square problem
Fig. 3. A driven cavity FSI model with an immersed solid tethered around its boundary points.
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min
z2Kn
kp� Jzkor min

y2Rn
kp� JVnyk: ð4:42Þ
Assume c is the length of the initial residual vector p and e1 is the unit vector representing the first column of
ðnþ 1Þ � ðnþ 1Þ identity matrix, substituting Eq. (4.41), we can show that Eq. (4.42) is equivalent to the following minimi-
zation within a much smaller space
min
y2Rn
kce1 � �Hnyk: ð4:43Þ
In the matrix-free Newton–Krylov iteration, we do not form the Jacobian matrix. In general, this Jacobian matrix in the im-
mersed boundary/continuum methods has an Oðn2Þ storage requirement. For large systems with million degrees of free-
doms, this Jacobian matrix requires a terabyte ð1012Þ memory which is beyond the limit of computational facilitates
available for most scientific researches. It is based on this understanding, we would also like to design a preconditioning
technique without the use of the Jacobian matrix [7,13,16].

First of all, the initial residual vector p in the kth Newton–Raphson iteration at time step mþ 1 of the nonlinear residual
Eq. (3.38) is normalized as v1 with the length c ¼ kpk2. Using Eq. (4.43), we have the corresponding n dimensional residual
vector b ¼ ce1. Introduce a preconditioning matrix K, for i ¼ 1 to n, using the modified Gram–Schmidt orthogonalization
process, we have qi ¼ K�1vi and w ¼ Jqi, and for j ¼ 1 toi, we have hji ¼ wTvj and w is updated with w� hjivj. As a conse-
quence, we obtain hðiþ1Þi ¼ kwk2 and viþ1 ¼ w=hðiþ1Þi.

An important procedure in the matrix-free Newton–Krylov is to replace w ¼ Jqi with a finite difference based calculation,
Jqi ’
rðHmþ1;k�1 þ eqiÞ � rðHmþ1;k�1Þ

e
; ð4:44Þ
where e is often set to be around the square root of the machine error [7].
After we establish the elements of an upper n� n Hessenberg matrix Hn as well as an upper ðnþ 1Þ � n Hessenberg matrix

�Hn, for j ¼ 1 to n, and i ¼ 1 to j� 1, a factorization of Hn is carried out through the following rotation matrix operations,
hij ¼ cihij þ sihðiþ1Þj;

hðiþ1Þj ¼ �sihij þ cihðiþ1Þj;
ð4:45Þ
Fig. 4. Horizontal velocity comparison with ADINA FSI.



Fig. 5. Vertical velocity comparison with ADINA FSI.
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where the entities of the rotation processes are calculated as
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

jj þ h2
ðjþ1Þj

q
; cj ¼ hjj=r; and sj ¼ hðjþ1Þj=r: ð4:46Þ
Through this rotation process, the upper Hessenberg matrix is converted to a diagonal matrix with the coefficients defined
as: for j ¼ 1 to n
Fig. 6. A driven cavity FSI model with an immersed solid tethered at the center.
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hjj ¼ r; pj ¼ cjbj; and pjþ1 ¼ �sjbj: ð4:47Þ
Finally, the termination criteria of the GMRES iteration will rest at the absolute value of bnþ1 in comparison with a given error
�. If jbnþ1j < �, the solution vector DH, or rather DV, DP, and DPs is expressed as
DHk;n ¼ DHk;0 þ
Xn

i¼1

yiq
i; or

DV
DP
DPs

2
64

3
75 ¼ DHk;0 þ

Xn

i¼1

yiq
i: ð4:48Þ
Fig. 7. Snapshots of results from the immersed continuum method and the ADINA FSI solver.

Fig. 8. Comparison of trajectories of the center of the tethered block.



X. S. Wang et al. / Journal of Computational Physics 228 (2009) 2535–2551 2545
As a final remark, if the initial guess DHk;0 does not produce a good estimate within a sufficiently small Krylov subspace Kn.
DHk;n will be introduced as an updated initial guess and the GMRES iteration procedure will continue until a solution with
the desired accuracy is obtained.

5. Numerical examples

Recently, some breakthroughs have been made in the development of finite element formulations for the immersed
boundary/continuum methods. In addition, a preliminary formulation for beams with both bending and torsional moments
has been developed [14]. In this paper, we employ a series of driven cavity problems with immersed solids to test various
immersed finite element formulations. The key attribute of these series of driven cavity problems is duality of incompress-
ible/compressible issues. Suppose the immersed solid is incompressible, the surrounding fluid must be incompressible.
However, if the immersed solid is compressible, the surrounding fluid is still capable of volume change as long as the net
system volume is preserved. Because the overall fluid and solid system has a fixed volume, if we use the pseudo compressible
viscous fluid model coupled with compressible solids, the results should be similar to incompressible viscous fluid model
coupled with incompressible solids if bulk moduli are sufficiently large.

In order to compare immersed methods with traditional mesh adaptive solution procedures, we start with a 1� 1 driven
cavity model with a 0:1� 0:1 immersed solid in the center as shown in Fig. 1. In the immersed continuum method, the back-
ground fluid mesh for the entire cavity which includes the space occupied by the immersed solids consists of 20� 20 9=4c
mixed finite elements as illustrated in Fig. 2. A typical immersed solid is also represented by 9=4c mixed finite elements. To
match with the compressibility of the immersed solid, we introduce a slightly compressible fluid model with a bulk modulus
2:1e6 and a viscosity of 1. Since we use the implicit compressible immersed continuum method, it would be feasible to as-
sign stiff springs (4000) to tether all boundary points of the immersed solid as shown in Fig. 3 to mimic an immersed solid
fixed in the center as shown in Fig. 1. In addition, a more general case as shown in Fig. 6 with the immersed solid tethered at
the center point is also considered. In all three cases, the immersed solid is represented with a Mooney–Rivilin material mod-
el with density qs ¼ 2, bulk modulus 1e7, and two additional material constants C1 ¼ 40 and C2 ¼ 20.

For the comparison of fixed immersed solid, we compare the velocity components of the fluid grid point ð0:5;0:7Þ be-
tween the top surface of the cavity and the immersed solid. With the same time step size, as show